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Abstract. This article introduces and develops a constructive method for gener-
ating random probability measures with a prescribed mean or distribution of the
means. The method involves sequentially generating an array of barycenters which
uniquely defines a probability measure. Basic properties of the generated measures
are presented, including conditions under which almost all the generated measures
are continuous, or almost all are purely discrete, or almost all have finite support.
Among the applications considered are models for distribution of mass, average-
optimal control problems, and experimental approximation of universal constants.

1. Introduction.

The main purpose of this article is to introduce a general and natural method for

constructing random probability measures with any prescribed mean or distribution

of the means. This method complements classical and recent constructions (e.g.,

Dubins and Freedman (1967), Ferguson (1973, 1974), Graf, Mauldin and Williams

(1986), Mauldin, Sudderth and Williams (1992) and Monticino (1996)), none of

which generate random measures with a priori specified means. In fact, even the

calculation of the distribution of the means for those constructions is difficult (cf.,

Cifarelli and Regazzani (1990) and Monticino (1995)).
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The new method presented here, which is based on sequential barycenters, sat-

isfies Ferguson’s (1974) two basic requirements that such constructions have large

support and are analytically manageable. The construction is easy to implement

and is robust, allowing generation of random measures which are either (almost

surely) discrete or continuous, as desired. Since many problems in probability and

analysis involve distributions with given means, the new construction will perhaps

prove a useful tool in a variety of applications, several which are outlined in section

4 below.

Section 2 contains basic definitions, properties and examples of sequential barycen-

ter arrays of (non-random) distributions. Section 3 presents the new construction

of random distributions based on generation of their successive barycenters, rather

than direct construction of the distribution function itself as in previous methods.

As noted in Dubins and Freedman (1967), any method for generating random

probability distributions may also be viewed as a method for generating random

convex functions (since the indefinite integral of a distribution function is convex),

stochastic processes (whose sample paths are distribution functions), or random

homeomorphisms (if the generated distributions are strictly increasing and contin-

uous), but such interpretations will be left to the interested reader.

2. Sequential Barycenter Arrays.

This section introduces the notion of a sequential barycenter array (SBA) and

develops some basic properties of the probability measures defined by the arrays.

These SBA’s, although not named as such, are used in standard proofs of Skorohod’s

embedding theorems (e.g., Billingsley (1986, Section 37)), and it is the reversal of

this standard procedure which is the foundation for the construction of the random

measures given in the next section.

Throughout this section, let X be a real-valued random variable with distribution

function F , such that E[|X |] < ∞.

Definition 2.1. The F-barycenter of (a,c], bF (a, c], is given by

bF (a, c] =


 E[X |X ∈ (a, c]] =

∫
(a,c]

xdF (x)

F (c)−F (a) , if F (c) > F (a)

a, if F (c) = F (a).
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Example 2.2. Let X be uniformly distributed over [0, 1]. Then bF (a, c] = c+a
2 ,

for any 0 ≤ a ≤ c ≤ 1.

Example 2.3. Let X be binomially distributed with n = 2 and p = 1
2 . Then

bF (0, 1] = 1, bF (1, 2] = 2, bF (0, 2] = 4
3 , and bF (a, 0] = 0, for a < 0.

Some elementary properties of F-barycenters, which follow easily from Definition

2.1, are recorded in the next lemma.

Lemma 2.4. Fix a < c such that P [X ∈ [a, c]] > 0, and let b = bF (a, c]. Then

(i) F (c) > F (a) if and only if b > a,

(ii) (F (c) − F (a))b = (F (b) − F (a)) bF (a, b] + (F (c) − F (b)) bF (b, c],

(iii) bF (a, b] = b if and only if bF (b, c] = b,

(iv) b ≥ bF (a, x], for all x ∈ (a, c].

Definition 2.5. The sequential barycenter array (SBA) of F is the triangular

array {mn,k}∞ 2n−1
n=1 k=1 = {mn,k(F )} = M(F ) defined inductively by

(2.1) m1,1 = E[X ] =
∫

xdF (x) = bF (−∞,∞),

(2.2) mn,2j = mn−1,j , for n ≥ 1 and j = 1, . . . , 2n−1 − 1,

(2.3) mn,2j−1 = bF (mn−1,j−1, mn−1,j], for j = 1, . . . , 2n−1, with the convention

that mn,0 = −∞ and mn,2n = ∞.

Example 2.6. Suppose X is uniformly distributed over [0, 1]. Then

{mn,k(F )} =
{

k

2n

}∞ 2n−1

n=1 k=1

.

Example 2.7. Suppose X is binomially distributed with n = 2 and p = 1
2 . Then

m1,1 = 1; m2,1 = 2
3 ; m2,3 = 2; and, for n ≥ 3,

mn,k =




0 for k = 1, . . . , 2n−2 − 1
2
3 for k = 2n−2

1 for k = 2n−2 + 1, . . . , 2n−1

2 for k = 2n−1 + 1, . . . , 2n − 1.

As seen in Example 2.7, it may happen that the sequential barycenters of a given

distribution are not distinct (i.e., mn,k+1 = mn,k for some n and k). The next
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example shows that monotonicity alone (mn,k ≤ mn,k+1) is not enough to guarantee

that an array be the SBA for some distribution. The additional condition needed

— (2.6) in Theorem 2.12 below — is a martingale property. First, several useful

properties of SBA’s are noted, followed by an inversion formula (Theorem 2.10) to

recover F from its SBA.

Example 2.8. Suppose M = {mn,k}∞ 2n−1
n=1 k=1 with m2,1 = 1

2 = m2,2 6= m2,3 = 1.

If M = M(F ) for some distribution function F , then, by (2.3),

m2,1 = bF (−∞,
1
2
] =

1
2

= bF (−∞,∞) = m2,2.

This implies F gives unit mass to 1
2 and so, again by (2.3), m2,3(F ) = 1

2 . Thus,

M 6= M(F ) for any F .

Notation. For SBA {mn,k}, let In,k = (mn,k−1, mn,k] ⊂ R.

Lemma 2.9. Let {mn,k}∞ 2n−1
n=1 k=1 = {mn,k(F )} be the SBA for distribution function

F . Then

(i) if F (c) > F (a), then there exist n and j with mn,j ∈ [a, c];

(ii) {mn,k(F )} is dense in the support of F ;

(iii) for each n ≥ 1, {In,k}2n

k=1 is a partition of R and {In+1,k}2n+1

k=1 is a refine-

ment of {In,k}2n

k=1;

(iv) P [X ∈ [mn,k−1, mn,k]] > 0, for all n ≥ 1 and k = 1, . . . , 2n.

Proof. Parts (i) and (iii) are routine; (ii) is straightforward from (i); and (iv) follows

by induction on n and Definition 2.1. �

Theorem 2.10. F is completely determined by the values {mn,k(F )}∞ 2n−1
n=1 k=1. In

particular, F (mn,k) is given inductively by F (mn,0) = 0, F (mn,2n) = 1; by (2.2)

for even k; and, for k = 2j − 1,

(2.4)

F (mn,2j−1) = F (mn−1,j−1) + (F (mn−1,j) − F (mn−1,j−1))
mn+1,4j−1 − mn+1,4j−2

mn+1,4j−1 − mn+1,4j−3

(with 0
0 = 1).

Proof. By Lemma 2.9 (ii) and (2.4), F is determined by {mn,k(F )}. To see (2.4),

note that Lemma 2.4 (ii) gives

F (mn,2j−1) = F (mn,2j−2)+(F (mn,2j) − F (mn,2j−2))
bF (mn,2j−1, mn,2j] − mn,2j−1

bF (mn,2j−1, mn,2j] − bF (mn,2j−2, mn,2j−1]
.
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And, by (2.2) and (2.3), mn−1,j−1 = mn,2j−2, mn−1,j = mn,2j, mn+1,4j−1 =

bF (mn,2j−1, mn,2j], and mn+1,4j−3 = bF (mn,2j−2, mn,2j−1]. �

Corollary 2.11. F1 = F2 if and only if mn,k(F1) = mn,k(F2), for all n ≥ 1 and

1 ≤ k ≤ 2n − 1.

Note: it is well known that certain other collections of barycenters — for example,

{bF (−∞, t]}t∈R — also determine F .

Theorem 2.12. A triangular array M = {mn,k}∞ 2n−1
n=1 k=1 is an SBA for some

distribution function F if and only if M satisfies (2.2),

(2.5) mn,k−1 ≤ mn,k, for all n ≥ 1 and k = 1, . . . , 2n, and

(2.6)

mn,4k−3 = mn,4k−2 if and only if mn,4k−1 = mn,4k−2, for all n ≥ 2 and k = 1, . . . , 2n−2.

Proof. Given M is an SBA for some distribution function F , the necessity of (2.2)

follows from Definition 2.5. Similarly, the necessity of (2.5) follows easily using

induction on n and Definition 2.5. For the necessity of (2.6), note that by (2.2) and

(2.3),

mn,4k−2 = mn−1,2k−1 = bF (mn−1,2k−2, mn−1,2k] = bF (mn,4k−4, mn,4k],

mn,4k−3 = bF (mn,4k−4, mn,4k−2],

and

mn,4k−1 = bF (mn−1,2k−1, mn−1,2k] = bF (mn,4k−2, mn,4k],

Letting a = mn,4k−4, b = mn,4k−2, and c = mn,4k, (2.6) follows by Lemma 2.4 (iii).

For the sufficiency portion of the proof, let {mn,k}∞ 2n−1
n=1 k=1 be a triangular array

satisfying (2.2), (2.5), and (2.6). Define random variables, X1, X2, . . . , inductively

as follows. X1 ≡ m1,1. For n ≥ 2, Xn takes values in {mn,2j−1}2n−1

j=1 with

(2.7)

P [Xn = mn,4j−3|Xn−1 = mn,4j−2] =




1 − P [Xn = mn,4j−1|Xn−1 = mn,4j−2]

= mn,4j−2−mn,4j−3
mn,4j−1−mn,4j−3

if mn,4j−3 6= mn,4j−2

1 if mn,4j−3 = mn,4j−2
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Note that (2.5) ensures that (2.7) defines probabilities. And (2.6) yields E[Xn+1||Xn] =

Xn — that is, X1, X2, . . . is a discrete martingale. Moreover, by (2.7), for all n ≥ N

and j = 1, . . . , 2n−1,

(2.8) bFn(mN,2j−2, mN,2j] = mN,2j−1.

To see that Xn → X a.s., where X is a random variable with the desired barycen-

ters, first note that by the construction of {Xn} above, with probability one

{X2 > m1,1} = {Xn > m1,1},

for all n > 1. (These sets are not always equal. It can happen, for example, that

on the set {X2 > m1,1}, the set {X3 = m1,1} 6= ∅. But, by Defininition 2.1 and

Lemma 2.4 (iii), this can not happen with positive probability. This crucial part

of the proof would not necessarily follow if the F-barycenters were defined on, say,

closed intervals [a, b] instead of on (a, b].)

Next observe that conditioned on the set {X2 > m1,1}, {Xn}n≥2 is a martingale

which is bounded below by m1,1. Thus it converges (on {X2 > m1,1}) to a random

variable X+ which, by (2.8), has the correct barycenters. A similar argument for

the set {Xn ≤ m1,1} completes the proof. �

Corollary 2.13. If F is continuous then

(2.9) mn,k−1(F ) < mn,k(F ), for all n ≥ 1 and k = 1, . . . 2n.

Corollary 2.14. If M = {mn,k}∞ 2n−1
n=1 k=1 satisfies (2.2) and (2.9), then M = M(F )

for some distribution function F .

Neither of the converses of Corollary 2.13 or 2.14 hold — as the next example

shows for the former. On the other hand, under the conditions given in Proposition

2.17 below, continuity of F can be inferred from M(F ).

Example 2.15. Let q1, q2, . . . be an ordering of the rationals in R, and let F be

the distribution function for the purely discrete measure which gives mass 1
2n to

qn. Then, for any a < b, a < bF (a, b] < b. Hence, mn,k(F ) < mn,k+1(F ), for all

n ≥ 1 and k = 0, . . . 2n − 1.
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Definition 2.16. For n ≥ 0 and distribution function F , the function dn = dF
n :

R → R
+ ∪ {∞}, is given by

dn(x) = |In,kn(x)|,

where In,kn(x) is the unique interval (mn,k−1(F ), mn,k(F )] = (mn,kn(x)−1, mn,kn(x)]

containing x ∈ R (cf. Lemma 2.9 (iii)).

Proposition 2.17. Let F be a distribution function with SBA M(F ) = {mn,k}∞ 2n−1
n=1 k=1.

(i) If x /∈ M(F ) and dn(x) = dn+1(x), for some n ≥ 1, then F is continuous

at x.

(ii) If, for some ε > 0, there exist infinitely many n such that

(2.10) ε <
dn+1(x)
dn(x)

,
dn+2(x)
dn+1(x)

< 1 − ε,

then F is continuous at x.

Proof. (i) By Definitions 2.5 and 2.16, if dn(x) = dn+1(x) then either bF In,kn(x) =

mn,k(F ) or bF In,kn(x) = mn,k−1(F ). In either case, this implies that the F -measure

of the open interval (mn,k−1(F ), mn,k(F )) is 0. Thus, if x /∈ M(F ), then F is

continuous at x.

(ii) By (2.2) and (2.4), for n ≥ 1 and both kn+1(x) and kn+2(x) odd,

F (mn+1,kn+1(x))−F (mn+1,kn+1(x)−1) = (F (mn,kn(x))−F (mn,kn(x)−1)
mn+2,4kn(x)−1 − mn+2,4kn(x)−2

mn+2,4kn(x)−1 − mn+2,4kn(x)−3

and

mn+2,4kn(x)−1 − mn+2,4kn(x)−2

mn+2,4kn(x)−1 − mn+2,4kn(x)−3
=

mn+2,4kn(x)−1 − mn+2,4kn(x)−2

(mn+2,4kn(x)−1 − mn+2,4kn(x)−2) + (dn+1(x) − dn+2(x))

≤ dn(x) − dn+1(x)
(dn(x) − dn+1(x)) + (dn+1(x) − dn+2(x))

=
1 − dn+1(x)

dn(x)

1 − dn+1(x)
dn(x)

dn+2(x)
dn+1(x)

where the last equality holds since Theorem 2.12 and (2.10) imply (with the con-

vention that 0
0 = 1) dn(x) 6= 0 for any n. Similar inequalities hold for the other

cases, and these along with (2.10) yield a constant ρ < 1 such that

F (mn+1,kn+1(x)) − F (mn+1,kn+1(x)−1) ≤ ρ(F (mn,kn(x)) − F (mn,kn(x)−1))

for infinitely many n. Hence the F -measure of {x} is 0 and F is continuous at x.

�
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3. Random SBA Distributions.

This section describes the new method for generating random probability mea-

sures using sequential barycenter arrays. The description is given explicitly for

random probability measures on [0, 1], but it is easy to extend this method to other

supports. The basic idea can be seen in the following special case.

First pick (deteministically or at random) a point m1,1 in [0, 1]. This point will

be the mean of the distribution. Given m1,1, next pick a point m2,1, uniformly in

[0, m1,1), which will be the conditional mean of the distribution given that its value

is less than its mean. Similarly, pick the upper conditional mean m2,3, uniformly in

(m1,1, 1); and so on. By Theorem 2.12 and Corollary 2.13, the resulting (random)

array {mn,k(ω)}∞ 2n−1
n=1 k=1 is the SBA for a unique Borel probability measure on [0, 1].

The requirement that the array be chosen by determining successive barycenters

uniformly is not crucial and the more general method presented below will be

based on two (possibly identical) Borel probability measures µ0 and µ on [0, 1].

That is, first choose m1,1 according to µ0, then choose the distances to the next

two successive barycenters independently according to µ rescaled to [0, m1,1] and

to [m1,1, 1], respectively. Continue in this manner using rescaled versions of µ from

the first step on.

More formally, let µ0 and µ be probability measures with support on [0, 1] and

[0, 1) respectively. Denote by P([0, 1]) the set of all Borel probability measures on

[0, 1]. Let {Xn,2j−1}∞,2n−1

n=1,j=1 be an array of independent random variables defined

on a probability space (Ω,F , P ) such that X1,1 has distribution µ0 and, for n ≥ 2,

each Xn,k has distribution µ.

Define a random array M = {mn,k}∞,2n−1
n=1,k=1 inductively by

m1,1 = X1,1,

mn,2j = mn−1,j , for n > 1 and j = 1, . . . 2n−1 − 1,

mn,4j−3 =




mn−1,2j−1 if mn−1,2j−1 = mn−1,2j, mn−1,2j−2 = mn−1,2j−1,
Xn,4j−3 = 0, or Xn,4j−1 = 0

mn−1,2j−1 − Xn,4j−3(mn−1,2j−1 − mn−1,2j−2) otherwise
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and

mn,4j−1 =
{

mn−1,2j−1 if mn,4j−3 = mn−1,2j−1

mn−1,2j−1 + Xn,4j−1(mn−1,2j − mn−1,2j−1) otherwise

(for all n ≥ 1, mn,0 = 0 and mn,2n = 1).

Endow the set of triangular arrays A = [0, 1]× [0, 1]3 × · · · × [0, 1]2
n−1 × . . . with

the standard product topology. Let A ⊂ A be the Borel subset of arrays which

satisfy (2.2), (2.5), and (2.6). Notice that M(ω) ∈ A for all ω ∈ Ω. Let Q(µ0,µ) be

the distribution of M on A. By Theorems 2.10 and 2.12, the mapping, T , (induced

by (2.2) and (2.4)) which sends an array {mn,k} ∈ A to its associated distribution,

T (m), is Borel from A to P([0, 1]) given the weak* topology.

Definition 3.1. The sequential barycenter array random probability mea-

sure (SBA rpm) B(µ0,µ) is the Borel measure Q(µ0,µ)T
−1 on P([0, 1]).

Proposition 3.2. The distribution on the mean under B(µ0,µ) is µ0. That is,

B(µ0,µ)

(
{F :

∫ 1

0

x dF (x) ≤ a}
)

= µ0([0, a]).

Proof. Immediate by the definitions of Q, T and B(µ0,µ). �

The SBA random probability measure construction thus provides a straightfor-

ward way to produce rpm’s with any prescribed mean or distribution on the mean,

whereas classical rpm constructions do not.

Throughout this article, a probability measure in P([0, 1]) will often be identified

with its distribution function, and B(µ0,µ) will often be regarded as a measure on

the set of distribution functions.

Example 3.3. Suppose µ0 = µ = δ 1
2
. Then, Q(µ0,µ) gives probability 1 to the

array
{

k
2n

}∞ 2n−1

n=1 k=1
. Hence, by Example 2.6 and Theorem 2.10, B(µ0,µ) gives prob-

ability one to the uniform distribution on [0, 1].

Remark. Sequential barycenter rpm’s arise which can not be realized with a

Dubins-Freedman construction — as indicated in the following two examples. More-

over, it is conjectured that unless µ0 and µ both give unit mass to 1
2 , then B(µ0,µ)

is never a Dubins-Freedman rpm.
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Example 3.4. Suppose µ0 = µ = δz, for 0 < z < 1 and z 6= 1
2 . Then there does

not exist a Dubins-Freedman base probability ν on the square [0, 1] × [0, 1] such

that the corresponding Dubins-Freedman prior, Pν , is equal to B(µ0,µ). To see this,

first note that, by construction, B(µ0,µ) = δFz for some distribution function Fz .

Moreover, by (2.4) of Theorem 2.10,

Fz(m1,1(Fz)) = Fz(z)

=
m2,3(Fz) − m2,2(Fz)
m2,3(Fz) − m2,1(Fz)

= 1 − z

and

Fz(m3,1(Fz)) = Fz(z(1 − z)2)

= F (m2,1(Fz))
(

m4,3(Fz) − m4,2(Fz)
m4,3(Fz) − m4,1(Fz)

)

= z(1 − z)
(

(z(1 − z)2 + z3(1 − z)) − z(1 − z)2

(z(1 − z)2 + z3(1 − z)) − z(1 − z)3

)
= z2(1 − z).

So, the graph of Fz contains a point above the main diagonal of the unit square

and a point below the diagonal.

However, if a probability measure ν on [0, 1]×[0, 1] has support solely on or above

the main diagonal, then, by the Dubins-Freedman construction, Pν has support on

the set of distribution functions whose graphs do not contain any points below the

diagonal. If the support of ν lies solely on or below the diagonal, then the support

of Pν is contained within the set of distribution functions whose graphs do not

contain any points above the diagonal. If ν gives positive probability to regions

above and below the diagonal, then by Dubins and Freedman (1967, Corollary 3.5)

the support of Pν is larger than the singleton set {Fz}. Hence, there does not exist

a Dubins-Freeman rpm equal to B(µ0,µ). �

Example 3.5. Let µ0 = µ = 1
2δ0 + 1

2δ 1
2
. Then, by construction, B(µ0,µ)(δ0) = 1

2 ,

B(µ0,µ)(δ 1
2
) = 3

8 , and B(µ0,µ)({δx : x 6= 0, 1
2}) = 0. Suppose there exists a Dubins-

Freedman base probability ν such that the corresponding Dubins-Freedman prior,

Pν , is equal to B(µ0,µ). Then, in order for Pν to give probability 3
8 to δ 1

2
,

ν

(
([

1
2
, 1) × {1}) ∪ ((0,

1
2
] × {0})

)
≥ 3

8
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must hold. However, if Pν(δ 1
2
) > 0 and ν

(
[12 , 1) × {1}) > 0, then, by the self-

similarity of the Dubins-Freedman construction, it would follow that

Pν

({
δx :

1
4
≤ x <

1
2

})
> 0.

Analogously, if ν
(
(0, 1

2 ] × {0}) > 0, it would follow that

Pν

({
δx :

1
2

< x ≤ 3
4

})
> 0.

Hence, there does not exist a Dubins-Freedman prior equal to B(µ0,µ). �

What types of measures are in the support of B(µ0,µ)? If µ0({0, 1}) = 0 =

µ({0}), then a straightforward argument using Proposition 2.17 (ii) and Borel-

Cantelli shows that, for every x ∈ [0, 1], B(µ0,µ)-almost all distribution functions

are continuous at x. Moreover, the stronger result, that B(µ0,µ)-almost all measures

are continuous on [0, 1] also holds. This is similar to Dubins and Freedman (1967,

Theorem 4.1), and contrasts to Dirichlet rpm’s (Ferguson (1973)) which are almost

surely discrete. Conversely, Theorem 3.8 below shows that if µ({0}) > 0 then

B(µ0,µ)-almost all measures are discrete.

Theorem 3.6. B(µ0,µ)-almost all measures are continuous on [0, 1] if and only if

µ0({0, 1}) = 0 = µ({0}).

Proof. The condition is clearly necessary from the definition of B(µ0,µ). The suffi-

ciency portion of the proof adapts a technique initiated by Dubins and Freedman

(1967, Theorem 4.1). In particular, by Mauldin, Sudderth, Williams (1992, Lemma

5.2), it is enough to show that

(3.2)
∫ (∫

D

d(F × F )(x, y)
)

dB(µ0,µ)(F ) = 0,

for D = {(x, y) ∈ [0, 1] × [0, 1] : x = y}.
For notational convenience, let FM denote the distribution function associated

with the SBA M = {mn,k} and, for a distribution function F with SBA {mn,k(F )},
let F (mn,k) = F (mn,k(F )). Then (3.2) is obtained if

En =
∫ ( 2n∑

k=1

(F (mn,k) − F (mn,k−1))2
)

dB(µ0,µ)(F )
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converges to 0 as n → ∞. By Theorem 2.10 and Definition 3.1,

En =
∫ [ 2n∑

k=1

(FM (mn,k) − FM (mn,k−1))2
]

dQ(µ0,µ)(M)

=
∫ 2n−1∑

j=1

(FM (mn,2j−1) − FM (mn,2j−2))2 + (FM (mn,2j) − FM (mn,2j−1))2


 dQ(µ0,µ)(M)

=
∫ 2n−1∑

j=1

(FM(ω)(mn−1,j(ω)) − FM(ω)(mn−1,j−1(ω)))2×
((

mn+1,4j−1(ω) − mn+1,4j−2(ω)
mn+1,4j−1(ω) − mn+1,4j−3(ω)

)2

+
(

mn+1,4j−2(ω) − mn+1,4j−3(ω)
mn+1,4j−1(ω) − mn+1,4j−3(ω)

)2
)]

dP (ω)

=
∫ 2n−1∑

j=1

(FM(ω)(mn−1,j(ω)) − FM(ω)(mn−1,j−1(ω)))2f(xn,2j−1(ω))


 dP (ω),

where

f(xn,2j−1) =



∫
[0,1)

∫
[0,1)

(
zxn,2j−1

zxn,2j−1+y(1−xn,2j−1)

)2

+
(

y(1−xn,2j−1)
zxn,2j−1+y(1−xn,2j−1)

)2

dµ(y)dµ(z) for j odd

∫
[0,1)

∫
[0,1)

(
z(1−xn,2j−1)

z(1−xn,2j−1)+yxn,2j−1

)2

+
(

yxn,2j−1
z(1−xn,2j−1)+yxn,2j−1

)2

dµ(y)dµ(z) for j even.

The last equality holds by Definition 3.1 and the assumption that µ0({0, 1}) =

0 = µ({0}). Furthermore, by µ0({0, 1}) = 0 = µ({0}) and Lemma 3.7, for

a fixed ε < 1
2 , there exists a K < 1 and an interval [α, β] ⊂ (0, 1), for which
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µ0([α, β]C), µ([α, β]C) < ε, such that for all n ≥ 2∫ 2n−1∑
j=1

(FM(ω)(mn−1,j(ω)) − FM(ω)(mn−1,j−1(ω)))2f(xn,2j−1(ω))


 dP (ω)

=
2n−1∑
j=1

∫
{ω:xn,2j−1(ω)∈[α,β]}

[
(FM(ω)(mn−1,j(ω)) − FM(ω)(mn−1,j−1(ω)))2f(xn,2j−1(ω))

]
dP (ω)

+
2n−1∑
j=1

∫
{ω:xn,2j−1(ω)∈[α,β]C}

[
(FM(ω)(mn−1,j(ω)) − FM(ω)(mn−1,j−1(ω)))2f(xn,2j−1(ω))

]
dP (ω)

≤
2n−1∑
j=1

∫
{ω:xn,2j−1(ω)∈[α,β]}

[
(FM(ω)(mn−1,j(ω)) − FM(ω)(mn−1,j−1(ω)))2K

]
dP (ω),

+
2n−1∑
j=1

∫
{ω:xn,2j−1(ω)∈[α,β]C}

[
(FM(ω)(mn−1,j(ω)) − FM(ω)(mn−1,j−1(ω)))2

]
dP (ω)

=
2n−1∑
j=1

K

∫ [
(FM(ω)(mn−1,j(ω)) − FM(ω)(mn−1,j−1(ω)))2

]
dP (ω),

+
2n−1∑
j=1

(1 − K)
∫

{ω:xn,2j−1(ω)∈[α,β]C}

[
(FM(ω)(mn−1,j(ω)) − FM(ω)(mn−1,j−1(ω)))2

]
dP (ω)

= KEn−1

+ (1 − K)
2n−2∑
j=1


 ∫
{ω:xn,4j−1(ω)∈[α,β]C}

(FM(ω)(mn−2,j(ω)) − FM(ω)(mn−2,j−1(ω)))2

×
(

mn,4j−1(ω) − mn,4j−2(ω)
mn,4j−1(ω) − mn,4j−3(ω)

)2

dP (ω)

+
∫

{ω:xn,4j−3(ω)∈[α,β]C}

(FM(ω)(mn−2,j(ω) − FM(ω)(mn−2,j−1(ω))2
(

mn,4j−2(ω) − mn,4j−3(ω)
mn,4j−1(ω) − mn,4j−3(ω)

)2

dP (ω)




≤ KEn−1 + (1 − K)
2n−2∑
j=1

[∫
(FM(ω)(mn−2,j(ω)) − FM(ω)(mn−2,j−1(ω)))2(ε + ε)dP (ω)

]

= KEn−1 + 2ε(1 − K)En−2
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Thus, letting E0 = 1, we get En → 0. �

Lemma 3.7. Let

f(x) =
∫

[0,1)

∫
[0,1)

(
xz

xz + (1 − x)y

)2

+
(

(1 − x)y
xz + (1 − x)y

)2

dµ(y)dµ(z).

If µ({0, 1}) = 0, then for all intervals [α, 1 − α] ⊂ (0, 1) there exists a K < 1 such

that f(x) ≤ K, for all x ∈ [α, 1 − α]. The same result holds for g(x) = f(1 − x).

Proof. Let px(y, z) = xz
xz+(1−x)y and let ε > 0 be such that µ([ε, 1 − ε]) > 1

2 . Then

f(x) =
∫

[0,1)

∫
[0,1)

(px(y, z))2 + (1 − px(y, z))2 dµ(y)dµ(z)

= 1 + 2


 ∫
[ε,1−ε]

∫
[ε,1−ε]

(px(y, z))2dµ(y)dµ(z) +
∫∫

([ε,1−ε]×[ε,1−ε])c

(px(y, z))2dµ(y)dµ(z)

−
∫

[0,1)

∫
[0,1)

px(y, z)dµ(y)dµ(z)




≤ 1 + 2


 x(1 − ε)

x(1 − ε) + (1 − x)ε

∫
[ε,1−ε]

∫
[ε,1−ε]

px(y, z)dµ(y)dµ(z) +
∫∫

([ε,1−ε]×[ε,1−ε])c

px(y, z)dµ(y)dµ(z)

−
∫

[0,1)

∫
[0,1)

px(y, z)dµ(y)dµ(z)




= 1 − 2


 (1 − x)ε

x(1 − ε) + (1 − x)ε

∫
[ε,1−ε]

∫
[ε,1−ε]

px(y, z)dµ(y)dµ(z)




≤ 1 − 1
2

(
(1 − x)ε

x(1 − ε) + (1 − x)ε

)(
xε

xε + (1 − x)(1 − ε)

)

Hence, for x ∈ [α, 1 − α],

f(x) ≤ 1 − 1
2

(
αε

(1 − α)(1 − ε) + αε

)2

< 1.�
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Theorem 3.8. Let ρ = µ({0}), and let N(F ) be the number of jumps of F .

(i) If ρ > 0, then for all µ0, B(µ0,µ)-almost all measures are discrete.

(ii) If ρ ≥ 1 − 1√
2
, then for all µ0, B(µ0,µ)-almost all measures have finite

support.

(iii) If ρ > 1 − 1√
2
, then for all µ0, EB(µ0,µ) [N ] < ∞.

Proof. (i) Let S(F ) denote the sum of the jumps of a distribution function F . Let

J(m) =
∫

S(F ) dB(δm,µ)(F ),

and set

J =
∫

S(F ) dB(µ0,µ)(F ) =
∫

J(m) dµ0(m).

To prove (i), it is enough to show that J = 1 and this obviously follows if J(m) = 1

for all 0 ≤ m ≤ 1.

Clearly, J(0) = 1 = J(1). Suppose 0 < m < 1, and let

pm(x, y) =
(1 − m)y

(1 − m)y + m(1 − x)
= 1 − qm(x, y).

Then, by Definition 3.1, Theorem 2.10 and the self-similarity of the sequential

barycenter rpm construction,

J(m) = ρ + ρ(1− ρ)+
∫

(0,1)

∫
(0,1)

J(1− x)pm(1− x, y)+ J(y)qm(1− x, y) dµ(x)dµ(y).

Now set R = ρ + ρ(1 − ρ) and use induction to show that

J(m) ≥ R + R(1 − ρ)2 + R(1 − ρ)4 + · · · + R(1 − ρ)2n

for all n ≥ 1. Thus, J(m) ≥ R
1−(1−ρ)2 = 1. But, J(m) ≤ 1; and so J(m) = 1, for

all 0 ≤ m ≤ 1.

(ii) Note that if mn,2j−2 < mn,2j−1 < mn,2j and either Xn+1,4j−3 = 0 or Xn+1,4j−1 =

0, then the B(µ0,µ) rpm gives positive probability to the point mn,2j−1 and proba-

bility zero to the set (m2j−2, m2j−1) ∪ (m2j−1, m2j ]. The idea is to use this fact in

constructing a branching process whose extinction corresponds to the generation of

a sequential barycenter measure with finite support. Specifically, let {Zi,n} be iid

random variables such that

P [Zi,n = 0] = ρ + ρ(1 − ρ) = 1 − P [Zi,n = 2].
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Set Y1 ≡ 1, and, for n ≥ 1, let

Yn+1 =
Yn∑
i=1

Zi,n.

Then, Y1, Y2, . . . is a branching process and, by the sequential barycenter rpm

construction,

B(µ0,µ) ({measures with finite support}) = µ0({0, 1})+(1−µ0({0, 1})) lim
n→∞P [Yn = 0].

Standard results (Ross (1970, Theorem 4.12)) for branching processes yield limn→∞ P [Yn =

0] = 1, if ρ ≥ 1 − 1√
2
.

(iii) As indicated by the branching process constructed above, the number of points

in the support of a generated sequential barycenter measure does not depend on

the mean m of the measure, as long as 0 < m < 1. That is, for any 0 < m1, m2 < 1

EB(δm1 ,µ) [N ] = EB(δm2 ,µ) [N ].

Denote this common value by E[N ]. Then

E[N ] = 1 · (ρ + ρ(1 − ρ)) + (1 − ρ)22E[N ].

Thus, for ρ > 1 − 1√
2

and R = ρ + ρ(1 − ρ), E[N ] = R
2R−1 . Hence,

EB(µ0 ,µ) [N ] = 1·[µ0({0, 1})+R(1−µ0({0, 1}))]+(1−µ0({0, 1}))(1−ρ)2·2E[N ] < ∞,

if ρ > 1 − 1√
2
. �

Example 3.9. Suppose µ0 = µ = 1
2δ 1

2
+ 1

2δ0. Then B(µ0,µ)-almost all measures

have finite support on the set of binary rationals and EBµ0,µ [N ] = 3
2 .

Often, a desirable property for random probability measures is that they have

large or full support. Recall that a probability ν defined on a compact Hausdorff

space H has full support if every nonempty open subset of H has positive ν-

measure. Note that this is equivalent to H being the smallest compact set which

has ν-measure one. The next theorem gives conditions on µ0 and µ which ensure

that Bµ0,µ has full support. Let supp(ν) denote the support of measure ν.
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Theorem 3.10. If µ0 and µ have full support on [0, 1], then B(µ0,µ) has full support

on P([0, 1]).

Proof. It is enough to show that each set in a base for the weak* topology of P([0, 1])

has positive B(µ0,µ) measure. One such base (see Billingsley (1968, Appendix III))

consists of sets of the form

{σ ∈ P([0, 1]) : σ(Oi) > τ(Oi) − ε, i = 1, . . . , k}

where each Oi is an open subset of [0, 1], τ is a measure in P([0, 1]), and ε > 0.

Each open set in [0, 1] is a countable disjoint union of open intervals. Thus, another

base for the weak* topology of P([0, 1]) is

(3.3) A = {σ ∈ P([0, 1]) : σ(∪r
j=1Oi,j) > τ(∪r

j=1Oi,j) − ε, i = 1, . . . , k}

where, for each i, the Oi,j are disjoint open intervals in [0, 1]. So it suffices to show

that B(µ0,µ)(A) > 0 for sets A of form (3.3). This will follow if B(µ0,µ)(C) > 0 for

C equal to

(3.4) C = ∩i,j{σ ∈ P([0, 1]) : σ(Oi,j) > τ(Oi,j) − ε

r
, i = 1, . . . , k},

since C ⊂ A.

Let Fτ and {mn,k(Fτ )} denote the distribution function of τ and SBA of Fτ ,

respectively. If Oi,j ∩ supp(τ) = ∅ then

{σ ∈ P([0, 1]) : σ(Oi,j) > τ(Oi,j) − ε

r
, i − 1, . . . , k} = P([0, 1]).

So, without loss of generality, assume that the intersection in (3.4) is over open inter-

vals Oi,j such that Oi,j ∩ supp(τ) 6= ∅. With this assumption and since {mn,k(Fτ )}
is dense in the support of τ , it follows that for each Oi,j there exists ni,j , ki,j , and

li,j such that

(3.5) (mni,j ,ki,j (Fτ ), mni,j ,li,j (Fτ )] ⊂ Oi,j

and

(3.6.) τ((mni,j ,ki,j (Fτ ), mni,j ,li,j (Fτ )]) > τ(Oi,j) − ε

2r
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(Note that ni,j , ki,j , and li,j exist such that (3.5) and (3.6) hold even if τ gives

positive mass to some m = mn,k(Fτ ) ∈ Oi,j , since the interval (m, m] = {mn,k(Fτ )}
will be in the partition {In+1,k}2n+1

k=1 .)

Let N = max
i,j

ni,j . By (2.4) of Theorem 2.10, there exists a δ such that

D = {σ ∈ P([0, 1]) : |mN,k(Fσ) − mN,k(Fτ )| < δ, for all k = 1, . . . , 2N − 1} ⊂ C.

Now, given µ0, µ have full support on [0, 1], it follows that B(µ0,µ)(D) > 0. �

It is straightforward to modify the above proof to show the following.

Proposition 3.11. If µ has full support on [0, 1), then supp(Bδm,µ) = {σ ∈
P([0, 1]) :

∫
xdσ = m}, for 0 ≤ m ≤ 1.

4. Applications.

Models for Mass Distribution. A basic problem in physics and biology is to

describe various (random) distributions of mass in space, such as charged particles

on a line, dispersion of species in a region, or galaxies in the universe. It is widely

accepted, for example, that “the universe consists of clusters of galaxies containing

clusters of solar systems containing clusters of planetary systems containing . . . ”

and so on. The prevailing models for describing this distribution of mass in the uni-

verse (e.g., Peebles (1993)) are random distributions which specify the probability

of finding a galaxy in a certain region of space.

For example, the Poisson model states that the probability P of finding a galaxy

in differential volume dV at location r satisfies

(4.1) dP = f(r)dV

for some given function f of position. This model, however, does not yield any of

the clustering which has been observed experimentally, and a clustering-hierarchy

(or fractal) model has been developed which does exhibit this phenomenon. In the

clustering-hierarchy model, the probability P̂ of finding a galaxy at distance r from

a given galaxy satisfies

(4.2) dP̂ = n(r)dV
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and similarly for higher correlations (e.g., dP̂ = n(r1, r2)dV1dV2 for finding galaxies

in dV1 and dV2 at vector positions r1 and r2 from a given galaxy).

Both these models, and all similar “probability of finding a galaxy” models ignore

the fundamental problem of precise definition of galaxy. In addition, the Poisson

model has no clustering, and the clustering-hierarchy model is inexact in that it

only specifies correlations up to three or four neighboring galaxies at the most,

whereas true distributions reflect interactions between all groups of galaxies.

An alternative model for mass distribution which does not have these short-

comings can be obtained by using an SBA rpm Bµ0,µ for various µ0 and µ. The

description given below will specialize to the 1-dimensional case of mass along a

line; for analogous models in two and three dimensions the reader is referred to [Hill

and Monticino, to appear]. For an SBA rpm Bµ0,µ, notice that if µ has most of its

mass close to 0, then Bµ0,µ will automatically have the clustering property, since

barycenters (and hence masses) will tend to be concentrated in clumps. The next

two examples are representative of concrete mass-dispersion models which can be

obtained in this manner; the two base distributions selected for these models were

chosen because of the importance of power laws and the exponential distribution

in current mass-distribution theories.

Example 4.1. (Power-law mass distribution model) Let µ0 be arbitrary and let

µ = µα have distribution

µ[0, x] = xα for some 0 < α ≤ 1.

Then for SBA rpm Bµ0,µα , “tighter” clustering occurs for smaller values of α, and

in the limiting case α = 0 there is total clustering (dirac measure).

Example 4.2. (Exponential-law mass distribution model) Let µ0 be arbitrary, and

let µ = µβ have distribution

µ[0, x] = (1 − e−βx)/(1 − e−β) for β > 0.

For this SBA rpm Bµ0,µ, clustering increases as β increases.

Note that purely atomic analogs of these two models can easily be obtained by

placing positive mass at zero also, i.e., letting µ = qδ0+(1−q)µα for some q ∈ (0, 1).



20 HILL AND MONTICINO

Such SBA rpm models for mass-distribution are not only easy to construct and

implement, but they also have several other significant advantages.

1. Richness. Various choices of base measures µ0 and µ can model a great variety

of clustering (and even “anti-clustering” if µ is concentrated near 1
2 ), and can

easily be extended to constructions where the successive barycenters are dependent

probabilistically, or in time, or position (or all three).

2. Scale-invariance. The SBA rpm’s Bµ0,µ apply equally well at all scales from

galactic to atomic (and beyond), and avoid the problem of a precise definition of

galaxy or solar system.

3. Exactness. Unlike the clustering hierarchy and similar models which specify

only partial (e.g., two- or three-point correlations), the Bµ0,µ model is exact.

4. Gravitational stability. Constructions based on the Poisson model (4.1) and

clustering-hierarchy model (4.2) are gravitationally unstable in the sense that plac-

ing a new galaxy in a given configuration will alter the gravitational forces (and

in general will result in a change of positions of the previously-placed galaxies).

An SBA rpm Bµ0,µ, on the other hand, has a gravitational stability not shared by

those models, since in the Bµ0,µ construction, once a center of gravity (barycenter)

for a particular subinterval is specified, the gravitational force between the mass on

that subinterval and mass outside that subinterval remains constant for the rest of

the construction, regardless of which random distribution is ultimately generated.

This is a consequence of determining the centers of gravity rather than the masses

directly (whose distribution can be calculated a posteriori by the inversion formula

Theorem 2.10).

Experimental Approximation of Universal Constants. Given a continuous

function f : P [0, 1] → R, suppose the universal bound

φ(f, m) := sup{f(F ) : F ∈ P [0, 1], bF = m}

is to be determined. By the continuity of f (convergence in distribution) and Propo-

sition 3.11, the following proposition gives an experimental method to approximate

φ. Let λ denote Lebesgue measure on [0, 1].

Proposition 4.3. Fix m ∈ (0, 1) and let F1, F2, . . . be iid Bδm,λ. Then

(4.3) max
1≤i≤n

f(Fi) ↗ φ(f, m) a.s.
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Example 4.4. Suppose the sharp bound cm,h is desired for the inequality

E[h(X − m)] ≤ cm,h for all 0 ≤ X ≤ 1 with E[X ] = m

for some continuous h : R → R. (E.g., if h(x) = x2, then cm,h = m − m2, which is

simply the familiar inequality Var X ≤ m − m2 if 0 ≤ X ≤ 1 and E[X ] = m.)

Letting f(F ) =
∫

h(x − m)dF (x), it follows from Proposition 4.3 that if

F1, F2, . . . are constructed independently with distribution Bδm,λ, then

max
1≤i≤n

∫
h(x − m)dFi(x) ↗ cm,h a.s.

Remarks. The assumption that 0 ≤ X ≤ 1 is not essential, and generalization to

more general supports can be accomplished by replacing λ by any measure with full

support in the desired range. Note that this method also approximates extremal

distributions (those nearly attaining cm) by simply keeping track of which Fi attain

max1≤i≤n f(Fi).

The reason for use of an SBA rpm Bδm,λ in Proposition 4.3 (or any other Bδm,µ

with supp(µ) = [0, 1]) is simply that such constructions produce rpm’s with the

prescribed mean, whereas previous standard constructions do not.

Average-Optimal Control Problems. Suppose a function g : P([0, 1])×R → R

is given, and the objective is to choose c (the control parameter) so as to make g(F, c)

as large as possible, on the average, over all distributions F on [0, 1] with given

mean m. The SBA rpm Bδm,λ is a natural prior for randomly choosing elements

of P([0, 1]) with mean m, since it chooses the successive barycenters uniformly at

each stage. Under this prior, the above average-optimal control problem simply

becomes

choose c∗ to maximize
c

∫
g(F, c)dBδm,λ(F ).

Typical control problem objectives of this type include: picking the control to

keep a process (or random variable) within a certain range with high probability,

e.g., find c∗ to make P (a ≤ X + c∗ ≤ b) as large as possible, on the average, over

all distributions in P ([0, 1]) with mean m; and the following control problem from

optimal stopping theory.
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Example 4.5. Suppose a stop rule t is to be chosen for stopping a sequence of

three random variables X1, X2, X3, knowing only that the {Xi} are independent,

take values in [0, 1], and have identical means m. What stop rule will make EXt

as large as possible, on the average, over all such {Xi}? By standard backward

induction (Chow, Robbins and Siegmund, 1971), it is clear that there is an optimal

stop rule tc of the form

{tc = 2} ⇔ {tc > 1} ∩ {Xi > m}
and

{tc = 1} ⇔ {X1 > c}.

Using this stop rule tc on X1, X2, X3 yields expected reward

EXtc =
∫

X1>c

X1 + P (X1 ≤ c)
∫

X2>m

X2 + mP (X1 ≤ c)P (X2 ≤ m),

and the objective now is reduced to finding c∗ which will make EXtc as large as

possible, on the average, over all independent {Xi} taking values in [0, 1] and having

mean m. As in classical optimal stopping theory, the optimal value for c is exactly

the expected reward of continuing past time one using tc (e.g., if the distributions

of X2 and X3 are known, then

(4.4) c =
∫

X2>m

X2 + P (X2 ≤ m)m).

In the present setting where only the means and bounds for the {Xi} are known,

however, the optimal c depends on the prior for X1, X2, X3, which in the case of

Bδm,λ would mean the optimal value of c is the Bδm,λ-average of (4.4), namely

c∗ =
∫ [∫

x>m

xdF (x) + mF (m)
]

dBδm,λ(F ).

Using the definition of Bδm,λ, it can be seen that in this case

c∗ = c∗m =
∫ 1

0

∫ 1

0

(
m(1 − m)y

mx + (1 − m)y
+

(m + (1 − m)y)(mx + (1 − m)y)
mx

)
dx dy.
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